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PID Controller Design 

In this tutorial we will introduce a simple yet versatile feedback compensator structure, the 

Proportional-Integral-Derivative (PID) controller. We will discuss the effect of each of the pid 

parameters on the closed-loop dynamics and demonstrate how to use a PID controller to improve 

the system performance.  

Key MATLAB commands used in this tutorial are: tf , step , pid , feedback , pidtool , 
pidtune 
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PID Overview 

In this tutorial, we will consider the following unity feedback system: 

 

The output of a PID controller, equal to the control input to the plant, in the time-domain is as 

follows: 

(1)  

First, let's take a look at how the PID controller works in a closed-loop system using the 

schematic shown above. The variable ( ) represents the tracking error, the difference between 

the desired input value ( ) and the actual output ( ). This error signal ( ) will be sent to the PID 

controller, and the controller computes both the derivative and the integral of this error signal. 

http://www.mathworks.com/help/toolbox/control/ref/tf.html
http://www.mathworks.com/help/toolbox/control/ref/step.html
http://www.mathworks.com/help/toolbox/control/ref/pid.html
http://www.mathworks.com/help/toolbox/control/ref/feedback.html
http://www.mathworks.com/help/toolbox/control/ref/pidtool.html
http://www.mathworks.com/help/toolbox/control/ref/pidtune.html
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#1
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#7
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#10
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#11
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#14
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#17
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#20
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#23
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#26
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID#28
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The control signal ( ) to the plant is equal to the proportional gain ( ) times the magnitude of 

the error plus the integral gain ( ) times the integral of the error plus the derivative gain ( ) 

times the derivative of the error.  

This control signal ( ) is sent to the plant, and the new output ( ) is obtained. The new output (

) is then fed back and compared to the reference to find the new error signal ( ). The controller 

takes this new error signal and computes its derivative and its integral again, ad infinitum.  

The transfer function of a PID controller is found by taking the Laplace transform of Eq.(1). 

(2)  

= Proportional gain = Integral gain = Derivative gain  

We can define a PID controller in MATLAB using the transfer function directly, for example: 

Kp = 1; 

Ki = 1; 

Kd = 1; 

 

s = tf('s'); 

C = Kp + Ki/s + Kd*s 

C = 

  

  s^2 + s + 1 

  ----------- 

       s 

  

Continuous-time transfer function. 

 

Alternatively, we may use MATLAB's pid controller object to generate an equivalent 

continuous-time controller as follows:  

C = pid(Kp,Ki,Kd) 

C = 

  

             1           

  Kp + Ki * --- + Kd * s 

             s           

 

  with Kp = 1, Ki = 1, Kd = 1 

  

Continuous-time PID controller in parallel form. 

 

Let's convert the pid object to a transfer function to see that it yields the same result as above: 

tf(C) 

ans = 
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  s^2 + s + 1 

  ----------- 

       s 

  

Continuous-time transfer function. 

 

The Characteristics of P, I, and D Controllers 

A proportional controller ( ) will have the effect of reducing the rise time and will reduce but 

never eliminate the steady-state error. An integral control ( ) will have the effect of 

eliminating the steady-state error for a constant or step input, but it may make the transient 

response slower. A derivative control ( ) will have the effect of increasing the stability of the 

system, reducing the overshoot, and improving the transient response.  

The effects of each of controller parameters, , , and on a closed-loop system are 

summarized in the table below.  

CL RESPONSE  RISE TIME  OVERSHOOT  SETTLING TIME  S-S ERROR  

Kp Decrease Increase Small Change Decrease 

Ki Decrease Increase Increase Eliminate 

Kd Small Change Decrease Decrease No Change  

Note that these correlations may not be exactly accurate, because , , and are dependent 

on each other. In fact, changing one of these variables can change the effect of the other two. For 

this reason, the table should only be used as a reference when you are determining the values for 

, and .  

Example Problem 

Suppose we have a simple mass, spring, and damper problem. 

 

The modeling equation of this system is 
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(3)  

Taking the Laplace transform of the modeling equation, we get 

(4)  

The transfer function between the displacement and the input then becomes  

(5)  

Let 

    M = 1 kg 

    b = 10 N s/m 

    k = 20 N/m 

    F = 1 N 

Plug these values into the above transfer function 

(6)  

The goal of this problem is to show you how each of , and contributes to obtain  

    Fast rise time 

    Minimum overshoot 

    No steady-state error 

Open-Loop Step Response 

Let's first view the open-loop step response. Create a new m-file and run the following code: 

s = tf('s'); 

P = 1/(s^2 + 10*s + 20); 

step(P) 
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The DC gain of the plant transfer function is 1/20, so 0.05 is the final value of the output to an 

unit step input. This corresponds to the steady-state error of 0.95, quite large indeed. 

Furthermore, the rise time is about one second, and the settling time is about 1.5 seconds. Let's 

design a controller that will reduce the rise time, reduce the settling time, and eliminate the 

steady-state error.  

Proportional Control 

From the table shown above, we see that the proportional controller (Kp) reduces the rise time, 

increases the overshoot, and reduces the steady-state error.  

The closed-loop transfer function of the above system with a proportional controller is: 

(7)  

Let the proportional gain ( ) equal 300 and change the m-file to the following:  

Kp = 300; 

C = pid(Kp) 

T = feedback(C*P,1) 

 

t = 0:0.01:2; 
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step(T,t) 

C = 

  

  Kp = 300 

  

P-only controller. 

 

 

T = 

  

        300 

  ---------------- 

  s^2 + 10 s + 320 

  

Continuous-time transfer function. 

 

 

The above plot shows that the proportional controller reduced both the rise time and the steady-

state error, increased the overshoot, and decreased the settling time by small amount.  

Proportional-Derivative Control 

Now, let's take a look at a PD control. From the table shown above, we see that the derivative 

controller (Kd) reduces both the overshoot and the settling time. The closed-loop transfer 

function of the given system with a PD controller is:  
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(8)  

Let equal 300 as before and let equal 10. Enter the following commands into an m-file and 

run it in the MATLAB command window.  

Kp = 300; 

Kd = 10; 

C = pid(Kp,0,Kd) 

T = feedback(C*P,1) 

 

t = 0:0.01:2; 

step(T,t) 

C = 

  

              

  Kp + Kd * s 

              

 

  with Kp = 300, Kd = 10 

  

Continuous-time PD controller in parallel form. 

 

 

T = 

  

     10 s + 300 

  ---------------- 

  s^2 + 20 s + 320 

  

Continuous-time transfer function. 

 



8 
 

 

This plot shows that the derivative controller reduced both the overshoot and the settling time, 

and had a small effect on the rise time and the steady-state error.  

Proportional-Integral Control 

Before going into a PID control, let's take a look at a PI control. From the table, we see that an 

integral controller (Ki) decreases the rise time, increases both the overshoot and the settling time, 

and eliminates the steady-state error. For the given system, the closed-loop transfer function with 

a PI control is:  

(9)  

Let's reduce the to 30, and let equal 70. Create an new m-file and enter the following 

commands.  

Kp = 30; 

Ki = 70; 

C = pid(Kp,Ki) 

T = feedback(C*P,1) 

 

t = 0:0.01:2; 

step(T,t) 
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C = 

  

             1  

  Kp + Ki * --- 

             s  

 

  with Kp = 30, Ki = 70 

  

Continuous-time PI controller in parallel form. 

 

 

T = 

  

         30 s + 70 

  ------------------------ 

  s^3 + 10 s^2 + 50 s + 70 

  

Continuous-time transfer function. 

 

 

Run this m-file in the MATLAB command window, and you should get the following plot. We 

have reduced the proportional gain (Kp) because the integral controller also reduces the rise time 

and increases the overshoot as the proportional controller does (double effect). The above 

response shows that the integral controller eliminated the steady-state error.  

Proportional-Integral-Derivative Control 
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Now, let's take a look at a PID controller. The closed-loop transfer function of the given system 

with a PID controller is: 

(10)  

After several trial and error runs, the gains = 350, = 300, and = 50 provided the desired 

response. To confirm, enter the following commands to an m-file and run it in the command 

window. You should get the following step response.  

Kp = 350; 

Ki = 300; 

Kd = 50; 

C = pid(Kp,Ki,Kd) 

T = feedback(C*P,1); 

 

t = 0:0.01:2; 

step(T,t) 

C = 

  

             1           

  Kp + Ki * --- + Kd * s 

             s           

 

  with Kp = 350, Ki = 300, Kd = 50 

  

Continuous-time PID controller in parallel form. 
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Now, we have obtained a closed-loop system with no overshoot, fast rise time, and no steady-

state error. 

General Tips for Designing a PID Controller 

When you are designing a PID controller for a given system, follow the steps shown below to 

obtain a desired response. 

1. Obtain an open-loop response and determine what needs to be improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response. You can 

always refer to the table shown in this "PID Tutorial" page to find out which controller 

controls what characteristics.  

Lastly, please keep in mind that you do not need to implement all three controllers (proportional, 

derivative, and integral) into a single system, if not necessary. For example, if a PI controller 

gives a good enough response (like the above example), then you don't need to implement a 

derivative controller on the system. Keep the controller as simple as possible.  

Automatic PID Tuning 
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MATLAB provides tools for automatically choosing optimal PID gains which makes the trial 

and error process described above unnecessary. You can access the tuning algorithm directly 

using pidtune or through a nice graphical user interface (GUI) using pidtool.  

The MATLAB automated tuning algorithm chooses PID gains to balance performance (response 

time, bandwidth) and robustness (stability margins). By default the algorthm designs for a 60 

degree phase margin.  

Let's explore these automated tools by first generating a proportional controller for the mass-

spring-damper system by entering the following commands:  

         pidtool(P,'p') 

          

The pidtool GUI window, like that shown below, should appear. 
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Notice that the step response shown is slower than the proportional controller we designed by 

hand. Now click on the Show Parameters button on the top right. As expected the proportional 

gain constant, Kp, is lower than the one we used, Kp = 94.85 < 300.  

We can now interactively tune the controller parameters and immediately see the resulting 

response int he GUI window. Try dragging the resposne time slider to the right to 0.14s, as 

shown in the figure below. The response does indeeed speed up, and we can see Kp is now closer 
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to the manual value. We can also see all the other performance and robustness parameters for the 

system. Note that the phase margin is 60 degrees, the default for pidtool and generally a good 

balance of robustness and performance.  

 

Now let's try designing a PID controller for our system. By specifying the previously designed or 

(baseline) controller, C, as the second parameter, pidtool will design another PID controller 

(instead of P or PI) and will compare the response of the system with the automated controller 

with that of the baseline.  

         pidtool(P,C) 

          

We see in the output window that the automated controller responds slower and exhibits more 

overshoot than the baseline. Now choose the Design Mode: Extended option at the top, which 

reveals more tuning parameters.  
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Now type in Bandwidth: 32 rad/s and Phase Margin: 90 deg to generate a controller similar in 

performance to the baseline. Keep in mind that a higher bandwidth (0 dB crossover of the open-

loop) results in a faster rise time, and a higher phase margin reduces the overshoot and improves 

the system stability.  

Finally we note that we can generate the same controller using the command line tool pidtune 

instead of the pidtool GUI  

opts = pidtuneOptions('CrossoverFrequency',32,'PhaseMargin',90); 

[C, info] = pidtune(P, 'pid', opts) 

C = 

  

             1           

  Kp + Ki * --- + Kd * s 

             s           

 

  with Kp = 320, Ki = 169, Kd = 31.5 

  

Continuous-time PID controller in parallel form. 
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info =  

                Stable: 1 

    CrossoverFrequency: 32 

           PhaseMargin: 90 

 

DC Motor Speed: PID Controller Design 

Key MATLAB commands used in this tutorial are: tf , step , feedback 

Contents 

 Proportional control 
 PID control 
 Tuning the gains 

From the main problem, the dynamic equations in the Laplace domain and the open-loop transfer 

function of the DC Motor are the following.  

(1)  

(2)  

(3)  

The structure of the control system has the form shown in the figure below. 

 

For the original problem setup and the derivation of the above equations, please refer to the DC 

Motor Speed: System Modeling page.  

http://www.mathworks.com/help/toolbox/control/ref/tf.html
http://www.mathworks.com/help/toolbox/control/ref/step.html
http://www.mathworks.com/help/toolbox/control/ref/feedback.html
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=ControlPID#3
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=ControlPID#8
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=ControlPID#10
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling
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For a 1-rad/sec step reference, the design criteria are the following. 

 Settling time less than 2 seconds 
 Overshoot less than 5% 
 Steady-state error less than 1% 

Now let's design a controller using the methods introduced in the Introduction: PID Controller 

Design page. Create a new m-file and type in the following commands.  

J = 0.01; 

b = 0.1; 

K = 0.01; 

R = 1; 

L = 0.5; 

s = tf('s'); 

P_motor = K/((J*s+b)*(L*s+R)+K^2); 

Recall that the transfer function for a PID controller is: 

(4)  

Proportional control 

Let's first try employing a proportional controller with a gain of 100, that is, C(s) = 100. To 

determine the closed-loop transfer function, we use the feedback command. Add the following 

code to the end of your m-file.  

Kp = 100; 

C = pid(Kp); 

sys_cl = feedback(C*P_motor,1); 

Now let's examine the closed-loop step response. Add the following commands to the end of 

your m-file and run it in the command window. You should generate the plot shown below. You 

can view some of the system's characteristics by right-clicking on the figure and choosing 

Characteristics from the resulting menu. In the figure below, annotations have specifically been 

added for Settling Time, Peak Response, and Steady State.  

         t = 0:0.01:5; 

         step(sys_cl,t) 

         grid 

         title('Step Response with Proportional Control') 

          

http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?aux=Extras_Mfile
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From the plot above we see that both the steady-state error and the overshoot are too large. 

Recall from the Introduction: PID Controller Design page that increasing the proportional gain 

Kp will reduce the steady-state error. However, also recall that increasing Kp often results in 

increased overshoot, therefore, it appears that not all of the design requirements can be met with 

a simple proportional controller.  

This fact can be verified by experimenting with different values of Kp. Specifically, you can 

employ the SISO Design Tool by entering the command sisotool(P_motor) then opening a 

closed-loop step response plot from the Analysis Plots tab of the Control and Estimation Tools 

Manager window. With the Real-Time Update box checked, you can then vary the control gain 

in the Compensator Editor tab and see the resulting effect on the closed-loop step response. A 

little experimentation verifies what we anticipated, a proportional controller is insufficient for 

meeting the given design requirements; derivative and/or integral terms must be added to the 

controller.  

PID control 

Recall from the Introduction: PID Controller Design page adding an integral term will eliminate 

the steady-state error to a step reference and a derivative term will often reduce the overshoot. 

Let's try a PID controller with small Ki and Kd. Modify your m-file so that the lines defining 

your control are as follows. Running this new m-file gives you the plot shown below.  

http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlPID
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Kp = 75; 

Ki = 1; 

Kd = 1; 

C = pid(Kp,Ki,Kd); 

sys_cl = feedback(C*P_motor,1); 

step(sys_cl,[0:1:200]) 

title('PID Control with Small Ki and Small Kd') 

 

Inspection of the above indicates that the steady-state error does indeed go to zero for a step 

input. However, the time it takes to reach steady-state is far larger than the required settling time 

of 2 seconds.  

Tuning the gains 

In this case, the long tail on the step response graph is due to the fact that the integral gain is 

small and, therefore, it takes a long time for the integral action to build up and eliminate the 

steady-state error. This process can be sped up by increasing the value of Ki. Go back to your m-

file and change Ki to 200 as in the following. Rerun the file and you should get the plot shown 

below. Again the annotations are added by right-clicking on the figure and choosing 

Characteristics from the resulting menu.  

         Kp = 100; 

         Ki = 200; 

         Kd = 1; 

         C = pid(Kp,Ki,Kd); 
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         sys_cl = feedback(C*P_motor,1); 

         step(sys_cl, 0:0.01:4) 

         grid 

         title('PID Control with Large Ki and Small Kd') 

          

 

As expected, the steady-state error is now eliminated much more quickly than before. However, 

the large Ki has greatly increased the overshoot. Let's increase Kd in an attempt to reduce the 

overshoot. Go back to the m-file and change Kd to 10 as shown in the following. Rerun your m-

file and the plot shown below should be generated.  

         Kp = 100; 

         Ki = 200; 

         Kd = 10; 

         C = pid(Kp,Ki,Kd); 

         sys_cl = feedback(C*P_motor,1); 

         step(sys_cl, 0:0.01:4) 

         grid 

         title('PID Control with Large Ki and Large Kd') 
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As we had hoped, the increased Kd reduced the resulting overshoot. Now we know that if we use 

a PID controller with  

Kp = 100, Ki = 200, and Kd = 10,  

all of our design requirements will be satisfied. 

 

 


